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Abstract

A model in statistical mechanics, characterised by a Gibbs measure, inherits a natural parameter-
space geometry through an embedding into the space of square-integrable functions. This geometric
structure reflects the underlying physics of the model in various ways. Here, we study the associated
geometry and curvature for finite one- and two-dimensional Ising models as the lattice sizeN is
varied. We show that there are temperatureT and magnetic fieldh dependent critical values for the
system sizeN∗(T, h) where the curvature varies rapidly and undergoes a change of sign. Such finite
volume geometric transitions are necessarily continuous. By comparison with known indicators,
we demonstrate that the criterionN � N∗ provides a consistent constraint that lattice systems are
qualitatively in their thermodynamic regime.
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1. Introduction

In the area of parametric statistics, it has long been known that a useful and illuminating
approach is to view statistical models as characterised by differentiable manifoldsM,
equipped with a metric structure. Of particular interest in statistical inference is the notion
of statistical divergence that measures the separation of two probability distributions, which
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is applied to study affinities amongst a given set of populations[1–4]. In particular, it was
observed by Rao[5] that, for a parametric family of probability distributions, this divergence
can be measured by the geodesic distance determined from the Fisher–Rao information
metric[6,7].

A natural arena in which to apply the tools of information geometry is statistical me-
chanics, whereinM is coordinatised by the external parameters of the system, such as
temperature, pressure, external fields, and so on. In recent years a number of different mod-
els have been investigated within this formalism[8–12](see[13] for a comprehensive list of
references). The geometric structure with which the manifoldM is endowed leads to certain
local invariants, one of the most important being the Ricci scalar curvatureR, and in the con-
text of statistical mechanics one may enquire into the physical characteristics of the system
which are encoded therein. In the thermodynamic limit, this question has been addressed in
a number of models, with the conclusion that, in those cases exhibiting second-order phase
transitions, the curvature of the thermodynamic parameter spaceM diverges at the critical
point. Moreover, the scaling behaviour of the curvature in the vicinity of the critical point is
identical to that of the correlation volume. In other words, there is a scaling relation[11,13]

R ∼ ξd, (1)

whereξ is the correlation length andd denotes the number of spatial dimensions of the
model.

The scaling behaviour of the curvature provides a satisfying picture of how certain uni-
versal features of the near-critical regime are encoded in the Fisher–Rao geometry ofM.
However, it is also apparent that such a relation cannot be extended away from the regime
of universality near second-order critical points. The correlation length is determined by
the two-point functions of the theory while, as we shall discuss in more detail below, the
curvature also receives contributions from higher order correlations. This begs the question
of how, as we move away from the critical points inM, the deviation betweenR andξd

should be interpreted in physical terms. In particular, it is clear from this line of thought
that the physical information encoded in geometric invariants like the scalar curvature must
go well beyond universal characteristics such as(1).

Understanding the physical content of nonuniversal corrections to the curvature is a
nontrivial problem in general, and need not have a generic answer. As a step towards this goal,
we will study a related problem, namely the manner in which finite volume effects manifest
themselves within information geometry. At first sight, one might anticipate from(1)that the
curvature will exhibit finite-size scaling in systems that possess second-order critical points
in the thermodynamic limit, and thus can act as a ‘precursor’ (cf.[14,15]) for second-order
phase transitions. However, while this is undoubtedly the case, we have observed a rather
more dramatic characteristic of the curvature which is an enhanced sensitivity to changes in
the system size precisely in the regime where the thermodynamic character is lost through
large finite size effects.

The problem of characterising the deviation from thermodynamic behaviour in finite
lattice systems has recently been stimulated by advances in the condensed matter physics
of mesoscopic-scale substances. Several investigations have focussed in particular on the
existence of metastable phases in small lattice models[16,17]. Consequently, an important
physical question to address in this context is when can a statistical mechanical system be
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regarded as ‘large’, or in its thermodynamic regime? Recent studies have shown[18] that
there is often a quite precise critical size, that we will callN∗, above which the system is to
a reasonable approximation ‘thermodynamic’. When the size drops belowN∗ the system
often behaves in a qualitatively different way. Naturally, one may anticipate that such effects
will be enhanced near second-order critical points where the correlation length grows large.

We will provide evidence that the information geometry is highly sensitive to these
transitions, and that the curvature itself is a useful observable for indicating the transition
of the system away from its thermodynamic regime. Specifically, we will consider lattice
spin systems for which the system sizeN is conveniently measured by the number of
lattice sites. We then find that the curvatureR(N), as a function ofN, exhibits a drastic
change in its behaviour near the critical sizeN∗. For models with a parameter space of
dimension 2 or higher, the most pronounced feature is that, althoughR is strictly positive
in the thermodynamic regime, as one lowers the system size throughN∗, the curvature
undergoes a large gradient deviating rapidly from its thermodynamic value and passes
through 0. We will refer to the lowest value ofN for which the curvature remains positive
asN+. The critical valueN+ is parameter dependent and consequently, for fixedN, there
is a boundary inM where the curvature vanishes. Our main conclusion is thatN+ ∼ N∗
and thus we can roughly interpret this boundary as separating thermodynamic (positive
curvature) and nonthermodynamic (negative curvature) domains. We will provide evidence
for this association by comparing the behaviour of the curvature with a more standard
indicator of finite size corrections, namely the Binder[19] cumulant. These two measures
indeed provide similar estimates forN∗.

The paper is organised as follows. We first recall how statistical models are endowed with
a natural geometry inSection 2. Then, to illustrate the behaviour of the curvature in the
thermodynamic regime, and also to motivate the association with finite size indicators, we
discuss inSection 3the simplified system of a one-dimensional parameter space. We then
turn to the Ising model in an external field as our primary model of interest, which possesses
a two-dimensional parameter space. After introducing the thermodynamic geometry in
Section 4, we turn inSections 5 and 6to study the finite volume behaviour of the curvature,
exhibiting its utility as an indicator of significant deviations from the thermodynamic regime.
The one-dimensional Ising model is analysed inSection 5, while the two-dimensional Ising
model is studied using Monte Carlo techniques inSection 6. We finish with some concluding
remarks inSection 7.

2. Information geometry in statistical mechanics

Before turning to specific examples, we first review the manner in which models in
statistical mechanics may be endowed with a natural geometric structure on the space of
external parameters.

To begin, we recall that the state of a system immersed in a large heat bath with a fixed
temperatureT is given, in thermal equilibrium, by the Gibbs measure

p(x|θ) = exp

(
−

r∑
i=1

θiHi(x) − ln Z(θ)

)
, (2)
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where the functionsHi(x) on the phase space reflect terms in the Hamiltonian,Z(θ) is
the partition function, and{θi} are thermodynamic variables which may include inverse
temperature, pressure, magnetic field, chemical potential, and so on. We assume that the
density functionp(x|θ) is twice differentiable in the parameterθ. We note that the Gibbs
measure should in fact be writtenp(H(x)|θ) because from a probabilistic point of view it
is a function of energy. Nevertheless, we use a simplified notation which should not cause
any confusion.

Given such a density function, we can map this to an element in the Hilbert spaceH of
square-integrable functions[7] by the prescription

p(x|θ) 
→ ψθ(x) =
√
p(x|θ). (3)

Then, because of the normalisation condition forp(x|θ), the elementψθ(x) ∈ H represents,
for each fixed value of{θi}, a point on the positive orthant of the unit sphereS in the Hilbert
space. By continuously varying the values of{θi}, this point moves inside anr-dimensional
subspace ofS. This subspace is the thermodynamic parameter space, or, for the above
Gibbs measure, the maximum entropy manifoldM, and the metric onM induced by the
underlying spherical geometry ofS is called the Fisher–Rao metric[5,20]. In particular, if
we choose the parametrisation as given in(2) and write∂i = ∂/∂θi, then this metric takes
the simple form

Gij = 4
∫

∂iψθ(x)∂jψθ(x)dx = ∂i∂j ln Z(θ) (4)

from which the curvature can be computed via standard prescriptions in Riemannian geom-
etry. Note that here and in what follows we shall implicitly work with the metric density,
obtained by dividing the free energy lnZ by the system sizeN, which is well-defined in
the thermodynamic limitN → ∞.

3. Extrinsic curvature of one-parameter statistical models

In order to gain some insight into which aspects of the physics are encoded in the geometry,
both in the thermodynamic regime and in finite systems, it proves instructive to study a
one-parameter family of thermal statesψβ parameterised by the inverse temperature variable
β = 1/kT, and analyse the role of the only natural invariant, the extrinsic curvature.

More precisely, the one-parameter family of canonical thermal statesψβ is determined
by the solution of the differential equation

∂ψβ

∂β
= −1

2
(H(x) − 〈H〉) ψβ, (5)

where〈H〉 is the expectation of the HamiltonianH(x) in the thermal equilibrium stateψβ.
The specification of the unique initial conditionψ0 at infinite temperature then determines
the manifoldM, which in this case is a curve parameterised byβ [21]. It follows from (5)
that the extrinsic curvatureKψ ofM is given by

Kψ(β) = 〈H̃4〉
〈H̃2〉2

− 〈H̃3〉2

〈H̃2〉3
− 1, (6)
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where

〈H̃n〉 =
∫

ψ2
β (H(x) − 〈H〉)n dx (7)

denotes thenth central moment of the HamiltonianH(x). When the dimension of the
Hilbert spaceH is infinite, the statistical model may exhibit a phase transition at a critical
pointβc = 1/kTc, where the trajectoryψβ on the unit sphereS proliferates intoL distinct
curves, whereL is the multiplicity of the ground state. Physically, the ambiguity reflects
the various coexisting phases allowed at the critical point. In particular, if the transition is
of second-order, the curvature is singular atβc. It follows from the expression(6) that the
scaling behaviour ofKψ aroundβc is given by

Kψ ∼
∣∣∣∣βc − β

β

∣∣∣∣
−κ

, (8)

whereκ = 2 − α in terms of the conventional critical exponents. The standard relation
2 − α = dν [22] then demonstrates that the curvature indeed scales like the correlation
volume[9,11,13,23], as stated in the previous section.

As discussed above, we also expect the information geometry to encode nonuniversal
features of the system. This is motivated here by the observation that the curvature(6)
depends on third- and fourth-order cumulants, while the correlation length is known to be a
second-order quantity. We then anticipate deviations to arise away from the critical regime,
and through finite size corrections. Specifically, we see thatKψ can be written as

Kψ = 2 − Bψ − Sψ, (9)

whereBψ = 3 − 〈H̃4〉/〈H̃2〉2 is the Binder[19] cumulant determined by the kurtosis of
the distribution, whileSψ = 〈H̃3〉2/〈H̃2〉3 is the skewness. Note thatBψ has long been
used as a means of extracting first-order critical points from finite-size scaling. Hence this
decomposition makes it clear thatKψ must be sensitive to changes in the system size.

We will argue that such an interpretation is also possible for the intrinsic curvature of
two-dimensional parameter-space manifolds, and we consider in particular the Ising model
in an external field. Moreover, we will find that the intrinsic curvature exhibits a very
characteristic dependence on the size as the system leaves its thermodynamic regime.

4. Ising models: geometry in the thermodynamic limit

Before turning to the analysis of finite size effects on the Ising model curvature, we first
discuss aspects of the geometry ofM in the thermodynamic limit. For this purpose, we
will consider the two-dimensional Ising model, and although much of what we discuss in
this section is known, we will provide an information-geometric characterisation of phase
transitions that is somewhat distinct from that already extant in the literature.

For the Ising spin model, we taker = 2 in equation (2), whereH1(x) is the spin–spin
interaction energy,H2(x) is the spin–field interaction energy, and(θ1, θ2) = (β, h), where
β = 1/kT. Thus,Z(θ) is a function of two variables, namely temperature and external
magnetic field. In such cases whereM is two-dimensional, the intrinsic scalar curvature



212 D.C. Brody, A. Ritz / Journal of Geometry and Physics 47 (2003) 207–220

Fig. 1. A schematic illustration of the equation of state for the Ising model. The scalar curvature on the parameter
space diverges along the spinodal boundary which envelopes the unphysical region. Thus, one can take the
viewpoint that the curvature in some sense ‘prevents’ entrance to the unphysical domain.

assumes a simple form

R = − 1

2G2

∣∣∣∣∣∣∣∣
∂2

1 ln Z ∂1∂2 ln Z ∂2
2 ln Z

∂3
1 ln Z ∂2

1∂2 ln Z ∂1∂
2
2 ln Z

∂2
1∂2 ln Z ∂1∂

2
2 ln Z ∂3

2 ln Z

∣∣∣∣∣∣∣∣
, (10)

whereG = det(Gij).
With this relation at hand, we are now in a position to study the geometric viewpoint

on the equilibrium state of the system as one lowers the temperature through the phase
transition atT = Tc. Firstly, we recall that the standard analysis (see e.g.[24]) for the Ising
model in two or higher dimensions shows that the equation of state for the order parameter,
i.e., the magnetisation per spinσ(h), has the behaviour illustrated inFig. 1. At temperatures
below the Curie pointTc, the equation of state exhibits an essentially unphysical behaviour,
namely the order parameterσ decreases in increasing external fieldh. The conventional
argument is to apply Maxwell’s equal area rule to follow through the transition as indicated
in Fig. 1. Note, however, that not all the region beyond the Maxwell boundary is entirely
unphysical, because in some parts the order parameterσ increases in decreasingh. The
unphysical region, on the other hand, is surrounded by the spinodal curve along which
∂σ/∂h = ∞, which also contains the transition point whereh = 0.

These features are reflected in the geometry of the parameter spaceM in the following
way. For the Ising model in two dimensions, the scalar curvatureR diverges at the transition
point, as well as along the entire spinodal curve. The scaling of the curvature in this regime is
again determined by the correlation volume as demonstrated in[11]. The divergence of the
curvature on the spinodal boundary provides a ‘geometric exclusion’ from the unphysical
domain. The presence of this divergence may be understood by taking a Legendre transform
of the Fisher–Rao metric, which is given by the Hessian matrix of the entropy

gab = ∂a∂bS (11)

with respect to the extensive variables of the system. This metric, called the entropy deriva-
tive metric, first introduced by Rao, has also been applied to study statistical mechanical
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systems by Ruppeiner[13]. One observes that the nondegeneracy condition for this metric
is precisely the concavity condition for the entropy, det(gab) > 0, and thus its breakdown,
where the curvature diverges, does indeed signal either a phase transition point or the pres-
ence of a spinodal boundary.

At a qualitative level, the physical behaviour of the system on traversing the spinodal
boundary is also encoded in the connectedness of the surfaceM on the unit sphereS.
In the absence of a phase transition,M is a smooth manifold. However, if a transition
exists, then below the transition temperature, i.e., ‘beyond’ the spinodal curve where the
curvature diverges, the maximum entropy surfaceM proliferates into two surfaces, as-
sociated with the two distinct ground states (all spins up or all spins down). More pre-
cisely, if we start with a pure thermal state|ψθ〉 at high temperature, pure in the sense that
for a fixedθ it is a uniquely defined state in the real Hilbert spaceH, then by reducing
the temperature adiabatically, this pure state ‘evolves’ into a mixed state

∑
j ρj|σj〉〈σj|

whereρj determines the probability that the system magnetisation isσj. By a suitable
measurement to determine the magnetisation of the system, this mixed state reduces to a
pure state|σk〉, assuming that the measurement outcome isσk. This situation is illustrated
in Fig. 2. Note that the ‘evolution’ described here only determines how an equilibrium
state changes from one temperature to another, and there is no real finite-time dynamics
involved.

In a more generic scenario of a phase transition for spin systems, we see that, in the
absence of a symmetry breaking field, the pure state characterising the equilibrium config-
uration turns into a mixed state, reflecting the multiplicity of the ground state, through a
geometric singularity. This, in a nutshell, is the information-geometric picture associated
with symmetry breaking phase transitions. Although the calculations involved in such an
analysis are rather involved, the two-dimensional Ising model at vanishing external field

Fig. 2. A schematic representation of the maximum entropy surface for the two-dimensional Ising model on
the unit sphereS in the Hilbert spaceH. At high temperatures, the surface is uniquely defined, while at low
temperatures, the surface is multi-valued, and can be labelled by the degeneracies of the ground state. Without
further information, such as the presence of symmetry breaking field, we cannot identify which one of the surfaces
the equilibrium state would reach beyond the spinodal curve.
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provides a useful testing ground due to the existence of the exact Onsager solution, from
which the curvature may be computed explicitly.

5. Ising chain: finite-size effects

The discussion of the preceding section illustrates how the information geometry captures
certain universal features of the system in the thermodynamic limit. We now turn to consider
the impact on the geometry of a reduction in the number of lattice points in the system.

For the two-dimensional parameter manifoldM, the statistical geometry turns out to be
quite sensitive to variations in the system size. However, what is perhaps more surprising is
that the scalar curvature responds to variations in system size in a manner which provides
a precise geometric characterisation of the transition between ‘small’ (nonthermodynamic)
and ‘large’ (thermodynamic) systems. In particular, for the Ising model, as the number of
lattice pointsN is reduced the scalar curvature remains close to its thermodynamic value,
which is positive throughout the parameter space, until we reach a parameter-dependent
critical valueN∗(θ) where deviations first appear. The remarkable feature is that this tran-
sition is rapidly followed by a large gradient in the curvature accompanied by a change of
sign. The critical valueN+ beyond which the curvature becomes negative is numerically
close toN∗, particularly near the trivial critical point atT = 0. The associationN∗ ∼ N+
is tested and confirmed by comparingN+ with the value ofN∗ determined from a more
standard indicator of finite size effects, specifically the magnetic Binder cumulant. Thus,
we are able to interpret the critical valuesN+(θ) as a useful characterisation of the transition
regime from ‘small’ to ‘large’ systems. We also find that for a givenN, there is a submani-
fold of the parameter spaceM on which the curvature vanishes, separating two domains of
positive and negative curvature. We can then interpret the positive (respectively, negative)
curvature domain as the parameter region in which the qualitative behaviour of the system
is roughly thermodynamic (respectively, nonthermodynamic).

To illustrate these features, we now focus on the Ising model, as a convenient tractable
example. We recall that the parameter space is two-dimensional with, as inSection 4,
H1(x) the spin–spin interaction energy, andH2(x) the spin–field interaction energy. The
Ricci scalar curvature(10)can be rewritten in the form

R = −1

2

∑
cijlmpq〈H̃iH̃j〉〈H̃1H̃lH̃m〉〈H̃2H̃pH̃q〉

(
∑

εrs〈H̃1H̃r〉〈H̃2H̃s〉)2
(12)

with appropriate coefficientsεrs, cijlmpq = 0,±1. This representation suggests its interpre-
tation as a natural two-dimensional generalisation of the ‘skewness’ of the distribution. The
intrinsic curvature thus depends only on second- and third-order cumulants, in contrast to
the extrinsic curvature in(6). Nonetheless, we will show thatR also acts as a clear indicator
of finite size effects.

We consider first the one-dimensional Ising chain in an external field. The Hamiltonian
for the system can now be written explicitly as

−βH = β

N∑
i=1

sisi+1 + h

N∑
i=1

si, (13)
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where{si = ±1} are the spin variables, andβ = 1/kT. The components of the Fisher–Rao
metric are obtained by differentiatingN−1 ln Z(β, h)

Gij = 1

N
∂i∂j{Nβ + ln [( coshh + η)N + ( coshh − η)N ]}, (14)

whereη = √
sinh2h + e−4β. If we compute the metric in the thermodynamic limitN →

∞, then the resulting expression simplifies, and we obtain the thermodynamic curvature,
given by

R = 1 + η−1 coshh, (15)

which is always positive[9,11]. However, for finiteN we observe that the curvature is no
longer strictly positive and, as noted in[23], for a given point on the parameter space the
curvatureR can decrease and eventually becomes negative asN is reduced. Indeed, the
transition to large negative values over a small range inN is quite marked. Some transition
curves forN+(T) as a function ofT (settingh = 0.2) are shown inFig. 3.

This behaviour motivates the proposal that the rapid transition of the curvature asN passes
throughN+ may provide a convenient indicator of the departure of the system away from
its thermodynamic regime, i.e., when the system changes from being large to small. To test
this proposition, a natural quantity to use for comparison is the magnetic Binder cumulant
Bh = 3 − 〈H̃4

2〉/〈H̃2
2〉2. TheN-dependence of this observable is shown inFig. 4. FiniteN

corrections again become apparent near the critical point. One sees that the sizeN∗(T), at
which deviations from the thermodynamic limit first become apparent quite closely matches
that of the curvatureN+(T) shown inFig. 3. Indeed, the correspondence is rather better

Fig. 3. A plot of thermodynamic curvatureR(T) for the one-dimensional Ising model, withh = 0.2, forN = 10,20
and 50. The solid line is the curvature in the thermodynamic limit, and deviations from this behaviour are
soon followed by the rapid transition of the curvature to large negative values. The curvature vanishes when
N+(T ∼ 0.45) = 50,N+(T ∼ 0.7) = 20 andN+(T ∼ 1) = 10. The conjectured associationN∗ ∼ N+ thus
holds increasingly well near the critical point.
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Fig. 4. A logarithmic plot of the Binder cumulant for the one-dimensional Ising model, withh = 0.2, as a function
ofT . The solid line represents the thermodynamic limit, and finite size deviations first occur atN∗(T ∼ 0.35) = 50,
N∗(T ∼ 0.8) = 20 andN∗(T ∼ 1.2) = 10. Note that the vertical axis has been shifted for convenience.

than might have been anticipated on comparingN+ with the value ofN at which the first
signs of deviation from thermodynamic behaviour are apparent inFig. 3.

This is the main result of this work and, as stated earlier, suggests that the information
geometry, or more precisely the invariant curvature, is remarkably sensitive to the transition
away from the thermodynamic regime as the system size is lowered.

We can now attempt to characterise the transition more precisely. In particular, these
results suggest that there exists a connected region in parameter space where the curvature
is negative, and a corresponding boundary where the curvature vanishes. This turns out to be
the case, and the profile of the zero curvature subspace ofM can be obtained numerically.
Results for several values ofN are shown inFig. 5.

The positivity of(15) implies that the negative curvature domain is ‘metastable’ in that
it is present only for finiteN. We find that asN increases it contracts to a region around the
critical point. This is to be expected as it is only in this neighbourhood that finite size effects
will be important whenN becomes large. However, the presence of the negative curvature
domain in the one-dimensional Ising model indicates that more generally it has little to do
with precursors for genuine phase transitions in the thermodynamic limit.

Without attempting to delve into the specific physical features of the negative curvature
domain, it is worth digressing slightly to note that the simplest geometric distinction with
the positive curvature domain is the divergence of nearby geodesics. This suggests a pos-
sible characterisation through equations of state in the following way. Specifically, recall
that a Taylor series expansion of the relative entropyS(p|q) = ∫

p ln (p/q) between two
distributionsp andq is given[25], to lowest order, by the Fisher–Rao line element

S(p(θ)|p(θ + dθ)) = 1
2Gij dθi dθj + · · · . (16)

ThusM can be interpreted as a maximum entropy surface and consequently specific
geodesics will correspond to equations of state for the system[10,25,26].
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Fig. 5. We exhibit the negative curvature domains for the one-dimensional Ising chain. The curvature is negative
in the low temperature phase, and vanishes along the curves shown, which correspond, from top to bottom, to
N = 8,12 and 16.

6. Two-dimensional Ising model: negative curvature domain

To explore the universality of these features, at least within the context of ferromagnetic
spin models, we also studied theN-dependence of the curvature in the two-dimensional
Ising model. The main new ingredient is the existence of a genuine phase transition in the
thermodynamic limit. However, we observe that this has only a relatively minor effect on
the behaviour of the curvature nearN∗(θ) and on the characteristic positive and negative
curvature domains inM. In particular, asN increases the ‘metastable’ negative curvature
domain now contracts around the critical point atT = Tc ∼ 2.27, rather than the critical
point atT = 0 in the one-dimensional Ising model.

The Hamiltonian is now given by

−βH = β

N∑
i,j=1

(sijsi+1j + sijsij+1) + h

N∑
i,j=1

sij, (17)

parameterised again by the inverse temperature and magnetic field, except the spin variables
{sij} are now defined on a toroidal lattice. For the two-dimensional Ising model with an
applied field, an analytical expression for lnZ is not available for genericN. However,
Monte Carlo simulation is relatively straightforward in this case and it has in fact been
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Fig. 6. An interpolation of theR = 0 boundary for the two-dimensional Ising model. Results for the 8× 8 and
16× 16 lattices are represented by open squares and filled circles, respectively. The curvature is positive above
(highh), and negative below (lowh), the domain boundaries.

used before in the geometric context[27]. Indeed, as we note from(12), each entry in the
determinant is a combination of central moments for terms in the Hamiltonian.

Because our primary aim is to provide evidence for the existence of a negative curvature
domain in this system, we implemented a conventional Metropolis algorithm on small
8 × 8 and 16× 16 lattices, in the parameter range where the negative curvature domain
is expected to arise. The details of the simulations are as follows. The results for each
individual measurement ofR were combined from a set of 103 runs to obtain the quoted
statistical errors, and there were 103 thermalisation steps prior to each sampling. The results
were stable with respect to using hot or cold starts, and sequential or random site updates.
This simple approach was sufficient for the qualitative issues we are concerned with here.
However, it is likely that, for example, multicanonical methods as used in[16,17]may be
more suitable for precise studies.

The results indeed indicate the presence of a negative curvature domain for finiteN, and
the zero curvature boundary has been interpolated inFig. 6. The relatively large errors are the
result of significant cancellations between the third-order cumulants used to construct the
curvature. An interesting point to note is that the boundary is fairly stable for the two system
sizes, in contrast to the large shift observed in the one-dimensional case. This is clearly
related to the presence of the critical point at(Tc ∼ 2.27, h = 0) in the thermodynamic
limit, around which the negative curvature domain shrinks. As in the one-dimensional
model, the transition in the curvature from a value near its thermodynamic limit to negative
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values was very sharp on passing throughN+(θ). This is also reflected in the fact that the
gradient of the curvature on the zero curvature boundary inFig. 6is large, and one does not
need to move far from the boundary into the positive curvature domain for the curvature to
approach its thermodynamic value. Thus the value ofN+(θ)determined in this manner again
seems to provide a good indication of when the system leaves its thermodynamic regime.

7. Discussion

The use of geometric techniques in the wider context of parametric statistics has a long
history [28], and this formalism has more recently been introduced as a useful tool in
statistical mechanics. Currently, the application of this formalism is hindered by the lack of
any detailed understanding of the physical interpretation of geometric invariants, such as
the scalar curvature, away from the universal regime near second-order critical points.

In this paper, we have moved beyond the thermodynamic limit by studying the behaviour
of the curvature in finite-size Ising models. The curvature was found to be sensitive to vari-
ation of the system sizeN, and most significantly was shown to undergo a rapid transition
to a negative curvature regime asN was lowered through a critical valueN+. Comparison
with a more standard finite size indicator—the Binder cumulant—allowed the interpre-
tation ofN+(θ) as a useful characterisation of the transitional size for which the system
changed from being in an essentially thermodynamic regime (N > N+) to an essentially
nonthermodynamic regime (N < N+).

These results pose a number of open questions. Perhaps the most pertinent with regard
to understanding the physical role of the curvature is whether there is a precise physical
characterisation of what we might tentatively call the negative curvature ‘phase’. Another
issue is whether these features exist beyond the class of ferromagnetic spin models that
we have studied here. In this regard, we conclude by noting that preliminary results for a
similar analysis of the three-dimensional Ising model also clearly indicate the presence of
a negative curvature region, although this domain in parameter space is somewhat smaller
than that for the two-dimensional case above, for analogous lattice sizes.
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